All‐Scale Hierarchical Structuring, Optimized Carrier Concentration, and Band Manipulation Lead to Ultra‐High Thermoelectric Performance in Eco‐Friendly MnTe

Author:

Zulkifal Shahzada1,Siddique Suniya1,Wang Zhichao2,Zhang Xuemei3,Huang Xinqi1,Xia Qinxuan1,Zhang Qingtang1,Li Song1,Wang Peng2,Li Di4,Ying Pan1,Zhang Yongsheng5,Tang Guodong1ORCID

Affiliation:

1. National Key Laboratory of Advanced Casting Technologies MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology Engineering Research Center of Materials Behavior and Design Ministry of Education Nanjing University of Science and Technology Nanjing 210094 China

2. National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China

3. A School of Physics and Electronic Information Engineering Engineering Research Center of Nanostructure and Functional Materials Ningxia Normal University Guyuan Ningxia 756000 China

4. Key Laboratory of Materials Physics Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 China

5. Advanced Research Institute of Multidisciplinary Sciences Qufu Normal University Qufu Shandong Province 273165 China

Abstract

AbstractMnTe emerges as an enormous potential for medium‐temperature thermoelectric applications due to its lead‐free nature, high content of Mn in the earth's crust, and superior mechanical properties. Here, it is demonstrate that multiple valence band convergence can be realized through Pb and Ag incorporations, producing large Seebeck coefficient. Furthermore, the carrier concentration can be obviously enhance by Pb and Ag codoping, contributing to significant enhancement of power factor. Moreover, microstructural characterizations reveal that PbTe nanorods can be introduced into MnTe matrix by alloying Pb. This can modify the microstructure into all‐scale hierarchical architectures (including PbTe nanorods, enhances point‐defect scattering, dense dislocations and stacking faults), strongly lowering lattice thermal conductivity to a record low value of 0.376 W m−1 K−1 in MnTe system. As a result, an ultra‐high ZT of 1.5 can be achieved in MnTe thermoelectric through all‐scale hierarchical structuring, optimized carrier concentration, and valence band convergence, outperforming most of MnTe‐based thermoelectric materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Ningxia Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3