Remotely Controlled Electrochemical Degradation of Metallic Implants

Author:

Rivkin Boris1ORCID,Akbar Farzin1ORCID,Otto Martin12ORCID,Beyer Lukas12ORCID,Paul Birgit1ORCID,Kosiba Konrad1ORCID,Gustmann Tobias1ORCID,Hufenbach Julia12ORCID,Medina‐Sánchez Mariana1345ORCID

Affiliation:

1. Leibniz Institute for Solid State and Materials Research (IFW) 01069 Dresden Germany

2. Institute of Materials Science Technische Universität Bergakademie Freiberg 09599 Freiberg Germany

3. Center for Molecular Bioengineering (B CUBE) Chair of Micro‐ and Nano Systems Technische Universität Dresden 01307 Dresden Germany

4. CIC nanoGUNE‐BRTA Donostia‐San Sebastián 20018 Spain

5. Ikerbasque Basque Foundation for Science Bilbao 48013 Spain

Abstract

AbstractBiodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe‐based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on‐board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe‐30Mn‐1C/Pt galvanic cell model system is first investigated and high‐resolution X‐ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter‐sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.

Funder

H2020 European Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3