Synergistic Enhancement of Mechanical and Electrochemical Properties in Grafted Polymer/Oxide Hybrid Electrolytes

Author:

Scharf Felix1ORCID,Krude Annalena1ORCID,Lennartz Peter1ORCID,Clausnitzer Moritz2ORCID,Shukla Gourav3ORCID,Buchheit Annika1ORCID,Kempe Fabian1ORCID,Diddens Diddo13ORCID,Glomb Pascal1,Mitchell Melanie M.1,Danner Timo2ORCID,Heuer Andreas13,Latz Arnulf2ORCID,Winter Martin14,Brunklaus Gunther1ORCID

Affiliation:

1. Helmholtz Institute Münster Forschungszentrum Jülich GmbH IMD‐4, Corrensstraße 48 Münster Germany

2. Deutsches Zentrum für Luft‐ und Raumfahrt (DLR) Helmholtz Institut Ulm (HIU) – Institut für Technische Thermodynamik Computergestützte Elektrochemie Helmholtzstraße 11 Ulm Germany

3. Institut für Physikalische Chemie Universität Münster Correnstraße 28/30 Münster Germany

4. MEET Battery Research Center University of Münster Corrensstraße 46 Münster Germany

Abstract

AbstractLithium metal batteries operated with high voltage cathodes are predestined for the realization of high energy storage systems, where solid polymer electrolytes offer a possibility to improve battery safety. Al2O3_PCL is introduced as promising hybrid electrolyte made from polycaprolactone (PCL) and Al2O3 nanoparticles that can be prepared in a one‐pot synthesis as a random mixture of linear PCL and PCL‐grafted Al2O3. Upon grafting, synergistic effects of mechanical stability and ionic conductivity are achieved. Due to the mechanical stability, manufacture of PCL‐based membranes with a thickness of 50 µm is feasible, yielding an ionic conductivity of 5·10−5 S cm−1 at 60 °C. The membrane exhibits an impressive performance of Li deposition in symmetric Li||Li cells, operating for 1200 h at a constant and low overvoltage of 54 mV and a current density of 0.2 mA cm−2. NMC622 | Al2O3_PCL | Li cells are cycled at rates of up to 1 C, achieving 140 cycles at >80% state of health. The straightforward synthesis and opportunity of upscaling as well as solvent‐free polymerization render the Al2O3_PCL hybrid material as rather safe, potentially sustainable and affordable alternative to conventional polymer‐based electrolytes.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3