Atomic Molybdenum Nanomaterials for Electrocatalysis

Author:

Chen Jianmei1,Guo Shanlu1,Wang Longlu1,Liu Shujuan2,Wang Hao3,Zhao Qiang12ORCID

Affiliation:

1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications Nanjing 210023 China

2. State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing 210023 China

3. Research Institute of Superconductor Electronics School of Electronic Science and Engineering Nanjing University Nanjing 210023 China

Abstract

AbstractAs a sustainable energy technology, electrocatalytic energy conversion requires electrocatalysts, which greatly motivates the exploitation of high‐performance electrocatalysts based on nonprecious metals. Molybdenum‐based nanomaterials have demonstrated promise as electrocatalysts because of their unique physiochemical and electronic properties. Among them, atomic Mo catalysts, also called Mo‐based single‐atom catalysts (Mo‐SACs), have the most accessible active sites and tunable microenvironments and are thrivingly explored in various electrochemical conversion reactions. A timely review of such rapidly developing topics is necessary to provide guidance for further exploration of optimized Mo‐SACs toward electrochemical energy technologies. In this review, recent advances in the synthetic strategies for Mo‐SACs are highlighted, focusing on the microenvironment engineering of Mo atoms. Then, the representative achievements of their applications in various electrocatalytic reactions involving the N2, H2O, and CO2 cycles are summarized by combining experimental and computational results. Finally, prospects for the future development of Mo‐SACs in electrocatalysis are provided and the key challenges that require further investigation and optimization are highlighted.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3