Diamond‐Reinforced Al(H2PO4)3@Epoxy Hybrid Thermal Adhesive With Ultra‐High Thermal Conductivity and Bonding Strength

Author:

Gao Ge1,Zhao Yuwei2,Cao Wenxin13ORCID,Su Zhenhua1,Wang Xiaolei1,Wang Zhuochao1,Sun Tingting1,Dai Bing1,Han Jiecai1,Li Bohong4,Wang Chao4,Zhu Jiaqi13ORCID

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 P. R. China

2. Luoyang Ship Material Research Institute Luoyang Henan 471000 P. R. China

3. Zhengzhou Research Institute Harbin Institute of Technology Zhengzhou 450000 P. R. China

4. Institute of Petrochemistry Heilongjiang Academy of Sciences Harbin 150040 P. R. China

Abstract

AbstractThe miniaturization, integration, and increased power of electronic devices have exacerbated serious heat dissipation issues. Thermally conductive adhesives, which effectively transfer heat and firmly bond components, are critical for addressing these challenges. This paper innovatively proposed a composite comprising inorganic phosphate/alumina as a matrix and diamond as filler. The composite achieved an isotropic thermal conductivity (TC) of up to 18.96 W m−1 K−1, significantly surpassing existing reports while maintaining electrical insulation. First‐principles calculations and experimental tests confirmed that the high TC of phosphate and excellent interface contact ensured efficient heat transfer. To optimize bonding performance, a modified‐diamond/Al(H2PO4)3@epoxy hybrid composite is subsequently developed using an organic modification method. The unique hybrid structure, combining inorganic thermal pathways and an organic adhesive network, enabled the hybrid composite to simultaneously possess a high TC (3.23 W m−1 K−1) and strong adhesion (14.35 MPa). Compared to previous reports, the comprehensive performance of this hybrid thermally conductive adhesive is exceptionally remarkable. The superior heat dissipation capability of the hybrid thermal adhesive is demonstrated in chip cooling scenarios. This organic/inorganic hybrid approach offered a new direction for obtaining advanced thermal interface materials, demonstrating significant application potential in chip soldering, packaging, and heat dissipation.

Funder

National Science Fund for Distinguished Young Scholars

China Postdoctoral Science Foundation

Aeronautical Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3