Ultrafast Hole Trapping in Te‐MoTe2‐MoSe2/ZnO S‐Scheme Heterojunctions for Photochemical and Photo‐/Electrochemical Hydrogen Production

Author:

Ali Syed Asim1,Ahmad Tokeer1ORCID

Affiliation:

1. Nanochemistry Laboratory Department of Chemistry Jamia Millia Islamia New Delhi 110025 India

Abstract

AbstractTe‐MoTe2‐MoSe2/ZnO S‐scheme heterojunctions are engineered to ascertain the advanced redox ability in sustainable HER operations. Photo‐physical studies have established the steady state transfer of photo‐induced charge carriers whereas an improved transfer dynamics realized by state‐of‐art ultrafast transient absorption and irradiated‐XPS analysis of optimized 5wt% Te‐MoTe2‐MoSe2/ZnO heterostructure. 2.5, 5, and 7.5wt% Te‐MoTe2‐MoSe2/ZnO photocatalysts (2.5MTMZ, 5MTMZ and 7.5MTMZ) exhibited 2.8, 3.3, and 3.1‐fold higher HER performance than pristine ZnO with marvelous apparent quantum efficiency of 35.09%, 41.42% and 38.79% at HER rate of 4.45, 5.25, and 4.92 mmol/gcat/h, respectively. Electrochemical water splitting experiments manifest subdued 583 and 566 mV overpotential values of 2.5MTMZ and 5MTMZ heterostructures to achieve 10 mA cm−2 current density for HER, and 961 and 793 mV for OER, respectively. For optimized 5MTMZ photocatalyst, lifetime kinetic decay of interfacial charge transfer step is evaluated to be 138.67 ps as compared to 52.92 ps for bare ZnO.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3