Chitin Nanofibrils from Fungi for Hierarchical Gel Polymer Electrolytes for Transient Zinc‐Ion Batteries with Stable Zn Electrodeposition

Author:

Ruiz Diego1,Michel Veronica F.1,Niederberger Markus1ORCID,Lizundia Erlantz23ORCID

Affiliation:

1. Laboratory for Multifunctional Materials, Department of Materials ETH Zurich Vladimir‐Prelog‐Weg 5 Zurich 8093 Switzerland

2. Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU) Bilbao 48013 Spain

3. BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa 48940 Spain

Abstract

AbstractRechargeable batteries play an integral role toward carbon neutrality. Environmentally sustainable batteries should consider the trade‐offs between material renewability, processability, thermo‐mechanical and electrochemical performance, as well as transiency. To address this dilemma, we follow circular economy principles to fabricate fungal chitin nanofibril (ChNF) gel polymer electrolytes (GPEs) for zinc‐ion batteries. These biocolloids are physically entangled into hierarchical hydrogels with specific surface areas of 49.5 m2·g−1. Ionic conductivities of 54.1 mS·cm−1 and a Zn2+ transference number of 0.468 are reached, outperforming conventional non‐renewable/non‐biodegradable glass microfibre separator–liquid electrolyte pairs. Enabled by its mechanically elastic properties and large water uptake, a stable Zn electrodeposition in symmetric Zn|Zn configuration with a lifespan above 600 h at 9.5 mA·cm−2 is obtained. At 100 mA·g−1, the discharge capacity of Zn/α‐MnO2 full cells increases above 500 cycles when replacing glass microfiber separators with ChNF GPEs, while the rate performance remains comparable to glass microfiber separators. To make the battery completely transient, the metallic current collectors are replaced by biodegradable polyester/carbon black composites undergoing degradation in water at 70 °C. This work demonstrates the applicability of bio‐based materials to fabricate green and electrochemically competitive batteries with potential applications in sustainable portable electronics, or biomedicine.

Funder

Euskal Herriko Unibertsitatea

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3