Engineering CSFe Bond Confinement Effect to Stabilize Metallic‐Phase Sulfide for High Power Density Sodium‐Ion Batteries

Author:

Wang Fei12,Liu Zhendong23,Feng Huiyan23,Wang Yuchen12,Zhang Chengzhi2ORCID,Quan Zhuohua12,Xue Lingxiao2,Wang Zhenxing2,Feng Songhao2,Ye Chong1,Tan Jun2,Liu Jinshui1

Affiliation:

1. Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology College of Materials Science and Engineering Hunan University Changsha 410082 China

2. Ji Hua Laboratory Foshan Guangdong 528000 China

3. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 China

Abstract

AbstractMetallic‐phase iron sulfide (e.g., Fe7S8) is a promising candidate for high power density sodium storage anode due to the inherent metal electronic conductivity and unhindered sodium‐ion diffusion kinetics. Nevertheless, long‐cycle stability can not be achieved simultaneously while designing a fast‐charging Fe7S8‐based anode. Herein, Fe7S8 encapsulated in carbon‐sulfur bonds doped hollow carbon fibers (NHCFs‐S‐Fe7S8) is designed and synthesized for sodium‐ion storage. The NHCFs‐S‐Fe7S8 including metallic‐phase Fe7S8 embrace higher electron specific conductivity, electrochemical reversibility, and fast sodium‐ion diffusion. Moreover, the carbonaceous fibers with polar CSFe bonds of NHCFs‐S‐Fe7S8 exhibit a fixed confinement effect for electrochemical conversion intermediates contributing to long cycle life. In conclusion, combined with theoretical study and experimental analysis, the multinomial optimized NHCFs‐S‐Fe7S8 is demonstrated to integrate a suitable structure for higher capacity, fast charging, and longer cycle life. The full cell shows a power density of 1639.6 W kg−1 and an energy density of 204.5 Wh kg−1, respectively, over 120 long cycles of stability at 1.1 A g−1. The underlying mechanism of metal sulfide structure engineering is revealed by in‐depth analysis, which provides constructive guidance for designing the next generation of durable high‐power density sodium storage anodes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3