Tuning the Inter‐Nanoplatelet Distance and Coupling Strength by Thermally Induced Ligand Decomposition

Author:

Chen Shuai1,Al‐Hilfi Samir H.1,Chen Guangbo2,Zhang Heng1,Zheng Wenhao1,Virgilio Lucia Di1,Geuchies Jaco J1,Wang Junren1,Feng Xinliang23,Riedinger Andreas1,Bonn Mischa1,Wang Hai I.14ORCID

Affiliation:

1. Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

2. Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstr. 4 01062 Dresden Germany

3. Max Planck Institute of Microstructure Physics D‐06120 Halle (Saale) Germany

4. Nanophotonics Debye Institute for Nanomaterials Science Utrecht University Princetonplein 1 Utrecht 3584 CC The Netherlands

Abstract

AbstractCdSe nanoplatelets (NPLs) are promising 2D semiconductors for optoelectronic applications, in which efficient charge transport properties are desirable. It is reported that thermal annealing constitutes an effective strategy to control the optical absorption and electrical properties of CdSe NPLs by tuning the inter‐NPL distance. Combining optical absorption, transmission electron microscopy, and thermogravimetric analysis, it is revealed that the thermal decomposition of ligands (e.g., cadmium myristate) governs the inter‐NPL distance and thus the inter‐NPL electronic coupling strength. Employing ultrafast terahertz spectroscopy, it is shown that this enhanced electronic coupling increases both the free carrier generation efficiency and the short‐range mobility in NPL solids. The results show a straightforward method of controlling the interfacial electronic coupling strength for developing functional optoelectronic devices through thermal treatments.

Funder

Max-Planck-Gesellschaft

China Scholarship Council

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3