Long‐Range Uniform Deposition of Ag Nanoseed on Cu Current Collector for High‐Performance Lithium Metal Batteries

Author:

Kim Ju Ye12ORCID,Chae Oh B.3,Kim Gukbo1ORCID,Peterson Andrew A.2,Wu Mihye4ORCID,Jung Hee‐Tae1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering (BK‐21 Plus) Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 South Korea

2. Department of Engineering Brown University 184 Hope St Providence RI 02906 USA

3. Department of Chemical and Biological Engineering Gachon University 1342 Seongnam‐daero, Sujeong‐gu Seongnam‐si Gyeonggi‐do 13120 South Korea

4. Advanced Materials Division Korea Research Institute of Chemical Technology 141 Gejeong‐ro, Yuseong‐gu Daejeon 34114 South Korea

Abstract

AbstractUniform lithium deposition is essential to hinder dendritic growth. Achieving this demands even seed material distribution across the electrode, posing challenges in correlating the electrode's surface structure with the uniformity of seed material distribution. In this study, the effect of periodic surface and facet orientation on seed distribution is investigated using a model system consisting of a wrinkled copper (Cu)/graphene structure with a [100] facet orientation. A new methodology is developed for uniformly distributed silver (Ag) nanoparticles over a large area by controlling the surface features of Cu substrates. The regularly arranged Ag nanoparticles, with a diameter of 26.4 nm, are fabricated by controlling the Cu surface condition as [100]‐oriented wrinkled Cu. The wrinkled Cu guides a deposition site for spherical Ag nanoparticles, the [100] facet determines the Ag morphology, and the presence of graphene leads to spacings of Ag seeds. This patterned surface and high lithiophilicity, with homogeneously distributed Ag nanoparticles, lead to uniform Li+ flux and reduced nucleation energy barrier, resulting in excellent battery performance. The electrochemical measurements exhibit improved cyclic stability over 260 cycles at 0.5 mA cm−2 and 100 cycles at 1.0 mA cm−2 and enhanced kinetics even under a high current density of 5.0 mA cm−2.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3