Single Atom Ag Bonding Between PF3T Nanocluster and TiO2 Leads the Ultra‐Stable Visible‐Light‐Driven Photocatalytic H2 Production

Author:

Kao Jui‐Cheng1,Teng Ting‐Yu2,Lin Hao‐Wu3,Tseng Fan‐Gang2,Ting Li‐Yu4,Bhalothia Dinesh2,Chou Ho‐Hsiu4,Lo Yu‐Chieh1,Chou Jyh‐Pin5,Chen Tsan‐Yao2ORCID

Affiliation:

1. Department of Materials Science and Engineering National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan

2. Department of Engineering and System Science National Tsing Hua University Hsinchu 30013 Taiwan

3. Department of Material Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan

4. Department of Chemical Engineering National Tsing Hua University Hsinchu 30013 Taiwan

5. Department of Physics National Changhua University of Education Changhua 50007 Taiwan

Abstract

AbstractAtomic Ag cluster bonding is employed to reinforce the interface between PF3T nano‐cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05‐P). The former expands the photon absorption band width and the latter facilitates the core‐hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h−1 g−1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2‐fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3