In Situ Interfacial Engineering of CeO2/Bi2WO6 Heterojunction with Improved Photodegradation of Tetracycline and Organic Dyes: Mechanism Insight and Toxicity Assessment

Author:

Chen Qian1,Ning Shunyan2,Yang Jingren3,Wang Longfei1,Yin Xiangbiao2,Wang Xinpeng1,Wei Yuezhou2,Zeng Deqian2ORCID

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life‐Cycle Safety for Composite Structures School of Resources, Environment and Materials Guangxi University Nanning 530004 P. R. China

2. School of Nuclear Science and Technology University of South China Hengyang 421001 P. R. China

3. State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants Shanghai Academy of Environmental Sciences Shanghai 200233 P. R. China

Abstract

AbstractThe construction of heterojunction photocatalysts is an auspicious approach for enhancing the photocatalytic performance of wastewater treatment. Here, a novel CeO2/Bi2WO6 heterojunction is synthesized using an in situ liquid‐phase method. The optimal 15% CeO2/Bi2WO6 (CBW‐15) is found to have the highest photocatalytic activity, achieving a degradation efficiency of 99.21% for tetracycline (TC), 98.43% for Rhodamine B (RhB), and 94.03% for methylene blue (MB). The TC removal rate remained at 95.38% even after five cycles. Through active species capture experiments, •O2, h+, and •OH are the main active substances for TC, RhB, and MB, respectively. The possible degradation pathways for TC are analyzed using liquid chromatography‐mass spectrometry (LC‐MS). The photoinduced charge transfer and possible degradation mechanisms are proposed through experimentation and density functional theory (DFT) calculations. Toxicity assessment experiments show a significant reduction in toxicity during the TC degradation process. This study uncovers the mechanism of photocatalytic degradation in CeO2/Bi2WO6 and provides new insights into toxicity assessment.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Natural Science Foundation of Guangxi Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3