Wafer‐Scale Fabrication of 2D Nanostructures via Thermomechanical Nanomolding

Author:

Kiani Mehrdad T1ORCID,Sam Quynh P1ORCID,Jung Yeon Sik2ORCID,Han Hyeuk Jin3ORCID,Cha Judy J1ORCID

Affiliation:

1. Department of Materials Science and Engineering Cornell University Ithaca NY 14853 USA

2. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 South Korea

3. Department of Environment and Energy Engineering Sungshin Women's University Seoul 02844 South Korea

Abstract

AbstractWith shrinking dimensions in integrated circuits, sensors, and functional devices, there is a pressing need to develop nanofabrication techniques with simultaneous control of morphology, microstructure, and material composition over wafer length scales. Current techniques are largely unable to meet all these conditions, suffering from poor control of morphology and defect structure or requiring extensive optimization or post‐processing to achieve desired nanostructures. Recently, thermomechanical nanomolding (TMNM) has been shown to yield single‐crystalline, high aspect ratio nanowires of metals, alloys, and intermetallics over wafer‐scale distances. Here, TMNM is extended for wafer‐scale fabrication of 2D nanostructures. Using In, Al, and Cu, nanomold nanoribbons with widths < 50 nm, depths ≈0.5–1 µm and lengths ≈7 mm into Si trenches at conditions compatible is successfully with back end of line processing . Through SEM cross‐section imaging and 4D‐STEM grain orientation maps, it is shown that the grain size of the bulk feedstock is transferred to the nanomolded structures up to and including single crystal Cu. Based on the retained microstructures of molded 2D Cu, the deformation mechanism during molding for 2D TMNM is discussed.

Funder

National Science Foundation

Division of Materials Research

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3