Liquid Crystalline Hydroxyapatite Nanorods Orchestrate Hierarchical Bone‐Like Mineralization

Author:

Chen Jishizhan1,Birchall Martin23,MacRobert Alexander J.1,Song Wenhui1ORCID

Affiliation:

1. UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration Department of Surgical Biotechnology Division of Surgery & Interventional Science University College London Rowland Hill Street London NW3 2PF UK

2. UCL Ear Institute University College London 332 Grays Inn Road London WC1X 8EE UK

3. Royal National Ear Nose and Throat and Eastman Dental Hospitals University College London Hospitals 47‐49 Huntley Street London WC1E 6DG UK

Abstract

AbstractBone matrix exhibits exceptional mechanical properties due to its unique nanocomposite structure of type I collagen fibrils and hydroxyapatite (HAp) nanoparticles in hierarchical liquid crystalline (LC) order. However, the regeneration mechanism of this LC structure is elusive. This study investigates the role of the LC structure of HAp nanorods in guiding aligned mineralization and its underlying molecular mechanism. A unidirectionally oriented LC phase of HAp nanorods is developed through engineering‐assisted self‐assembling. This is used to study the growth direction of long‐range aligned extracellular matrix (ECM) and calcium deposit formation during the osteogenic differentiation of human bone marrow‐derived mesenchymal stem cells. It is found that 2 key regulatory genes, COL1A1 and COL4A6, lead to the formation of aligned ECM. Activation of the PI3K‐Akt pathway enhances osteogenesis and promotes ordered calcium deposits. This study provides evidence for elucidating the mechanism of LC‐induced ordered calcium deposition at hierarchical levels spanning from the molecular to macro‐scale, as well as the switch from ordered to disordered mineralization. These findings illuminate bone regeneration, contribute to the development of biomimetic artificial bone with long‐range ordered structures, and suggest a basis for therapeutic targeting of microstructure‐affected bone disorders and the broader field of cell‐ECM interactions.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3