Toward Practical Alloy Anode Based Solid State Batteries

Author:

Mahajani Varad1,Koratkar Nikhil12ORCID

Affiliation:

1. Department of Materials Science and Engineering Rensselaer Polytechnic Institute 110 8th Street Troy NY 12180 USA

2. Department of Mechanical Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute 110 8th Street Troy NY 12180 USA

Abstract

AbstractAlloy‐based anodes are regarded as safer and higher capacity alternatives to lithium metal and commercial graphite anodes respectively. However, their commercialization is hindered by poor stability and irreversible loss of active material during cycling. Combining non‐flammable and electrochemically stable solid‐state electrolytes with high‐capacity alloy anodes has chemo‐mechanical benefits that can address these long‐standing issues. The distinctive interfacial characteristics of solid‐state electrolytes reduce the impact of volume variation and dynamic reconstruction of the solid‐electrolyte‐interphase, thereby realizing the best of both worlds. In this perspective, the interfacial underpinnings for alloy anode based solid‐state batteries that are crucial for their success are discussed. The goal is to update the audience with key recent findings that can lay the foundation for future research work in this area. The relevant steps toward commercialization of alloy anode based solid‐state batteries are also discussed, starting from bulk and interface architectures to electrode composite preparation and final cell assembly.

Funder

Rensselaer Polytechnic Institute

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3