Investigation of the Photocatalytic Hydrogen Production of Semiconductor Nanocrystal‐Based Hydrogels

Author:

Schlenkrich Jakob1ORCID,Lübkemann‐Warwas Franziska12ORCID,Graf Rebecca T.13ORCID,Wesemann Christoph1ORCID,Schoske Larissa12ORCID,Rosebrock Marina12ORCID,Hindricks Karen D. J.24ORCID,Behrens Peter234ORCID,Bahnemann Detlef W.56ORCID,Dorfs Dirk23ORCID,Bigall Nadja C.23ORCID

Affiliation:

1. Leibniz University Hannover Institute of Physical Chemistry and Electrochemistry Callinstraße 3A 30167 Hannover Germany

2. Cluster of Excellence PhoenixD (Photonics Optics and Engineering ‐Innovation Across Disciplines) Leibniz University Hannover 30167 Hannover Germany

3. Laboratory of Nano‐ and Quantum Engineering Leibniz University Hannover 30167 Hannover Germany

4. Leibniz University Hannover Institute of Inorganic Chemistry Callinstraße 9 30167 Hannover Germany

5. Leibniz University Hannover Institute of Technical Chemistry Callinstraße 5 30167 Hannover Germany

6. Laboratory “Photoactive Nanocomposite Materials” Saint‐Petersburg State University Ulyanovskaya str. 1, Saint‐Petersburg 198504 Peterhof Russia

Abstract

AbstractDestabilization of a ligand‐stabilized semiconductor nanocrystal solution with an oxidizing agent can lead to a macroscopic highly porous self‐supporting nanocrystal network entitled hydrogel, with good accessibility to the surface. The previously reported charge carrier delocalization beyond a single nanocrystal building block in such gels can extend the charge carrier mobility and make a photocatalytic reaction more probable. The synthesis of ligand‐stabilized nanocrystals with specific physicochemical properties is possible, thanks to the advances in colloid chemistry made in the last decades. Combining the properties of these nanocrystals with the advantages of nanocrystal‐based hydrogels will lead to novel materials with optimized photocatalytic properties. This work demonstrates that CdSe quantum dots, CdS nanorods, and CdSe/CdS dot‐in‐rod‐shaped nanorods as nanocrystal‐based hydrogels can exhibit a much higher hydrogen production rate compared to their ligand‐stabilized nanocrystal solutions. The gel synthesis through controlled destabilization by ligand oxidation preserves the high surface‐to‐volume ratio, ensures the accessible surface area even in hole‐trapping solutions and facilitates photocatalytic hydrogen production without a co‐catalyst. Especially with such self‐supporting networks of nanocrystals, the problem of colloidal (in)stability in photocatalysis is circumvented. X‐ray photoelectron spectroscopy and photoelectrochemical measurements reveal the advantageous properties of the 3D networks for application in photocatalytic hydrogen production.

Funder

Deutsche Forschungsgemeinschaft

Niedersächsisches Ministerium für Wissenschaft und Kultur

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3