Supramolecular Gel‐to‐Gel Transition Induced by Nanoscale Structural Perturbation via the Rotary Motion of Feringa's Motor

Author:

Qin Yunan1,Wang Yurou1,Xiong Jingpeng1,Li Quan12ORCID,Zeng Ming‐Hua13

Affiliation:

1. Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 P. R. China

2. Department of Chemistry School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin 301617 P. R. China

3. Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China

Abstract

AbstractSupramolecular rather than covalent molecular engineering on Feringa motors can provide an alternative toolkit for tuning the properties of motorized materials through appropriate supramolecular structural perturbations, which are underexplored. Herein, a multicomponent supramolecular gel system is successfully prepared by employing an ultra‐low molecular weight gelator and a modulator‐Feringa motor. The electron microscopic, spectroscopic, and rheological data revealed that the morphology and mechanical properties of the gel can be tuned via a crystallographic mismatch branching (CMB) mechanism simply by adding varied amounts of motor modulators. Notably, the rotary motion of the motor is preserved in such a multicomponent gel system, and the morphology and rheology of the gel can be further altered by the motor's rotary motion that promotes the structural perturbation, resulting in seldomly seen gel‐to‐gel transition events. The work shown here offers prospects to utilize a supramolecular perturbation strategy to deliver responsiveness from molecular motors to the corresponding bulk materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3