Introducing Hybrid Defects of Silicon Doping and Oxygen Vacancies into MOF‐Derived TiO2–X@Carbon Nanotablets Toward High‐Performance Sodium‐Ion Storage

Author:

Yao Tianhao1ORCID,Wang Hongkang1ORCID,Ji Xin1,Wang Deyu2,Zhang Qingmiao13,Meng Lingjie34,Shi Jian‐Wen1ORCID,Han Xiaogang1,Cheng Yonghong1

Affiliation:

1. State Key Lab of Electrical Insulation and Power Equipment Center of Nanomaterials for Renewable Energy (CNRE) School of Electrical Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China

2. Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education Jianghan University Wuhan 430056 P. R. China

3. School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry Xi'an Jiaotong University Xi'an 710049 P. R. China

4. Instrumental Analysis Center Xi'an Jiaotong University Xi'an 710049 P. R. China

Abstract

AbstractTitanium dioxide (TiO2) is a promising anode material for sodium–ion batteries (SIBs), which suffer from the intrinsic sluggish ion transferability and poor conductivity. To overcome these drawbacks, a facile strategy is developed to synergistically engineer the lattice defects (i.e., heteroatom doping and oxygen vacancy generation) and the fine microstructure (i.e., carbon hybridization and porous structure) of TiO2‐based anode, which efficiently enhances the sodium storage performance. Herein, it is successfully realized that the Si‐doping into the MIL‐125 metal‐organic framework structure, which can be easily converted to SiO2/TiO2–x@C nanotablets by annealing under inert atmosphere. After NaOH etching SiO2/TiO2–x@C which contains unbonded SiO2 and chemically bonded SiOTi, thus the lattice Si‐doped TiO2–x@C (Si‐TiO2–x@C) nanotablets with rich Ti3+/oxygen vacancies and abundant inner pores are developed. When examined as an anode for SIB, the Si‐TiO2–x@C exhibits a high sodium storage capacity (285 mAh g−1 at 0.2 A g−1), excellent long‐term cycling, and high‐rate performances (190 mAh g−1 at 2 A g−1 after 2500 cycles with 95.1% capacity retention). Theoretical calculations indicate that the rich Ti3+/oxygen vacancies and Si‐doping synergistically contribute to a narrowed bandgap and lower sodiation barrier, which thus lead to fast electron/ion transfer coefficients and the predominant pseudocapacitive sodium storage behavior.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3