Affiliation:
1. Department of Applied Chemistry School of Chemical and Chemical Engineering Chongqing University Chongqing 401331 P. R. China
2. College of Textiles Donghua University Shanghai 201620 P. R. China
3. School of Mechanical Engineering Yonsei University 120‐749 Seoul South Korea
4. Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
5. Department of Materials Process Engineering Graduate School of Engineering Nagoya University Nagoya 464−8603 Japan
Abstract
AbstractMetal–organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF‐based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF‐based heterostructures, as it can achieve precise regulation of MOF‐based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF‐based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF‐based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF‐based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献