Abundant Edge Active Sites‐Modified High‐Crystalline g‐C3N5 for Hydrogen Peroxide Production from Pure‐Water via a Quasi‐Homogeneous Photocatalytic Process

Author:

Shen Yu1,Xu Rui1,Shan Pengnian1,Zhang Shunhong1,Sun Lei2,Xie Haijiao3,Guo Feng1,Li Chunsheng4,Shi Weilong2ORCID

Affiliation:

1. School of Energy and Power Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China

2. School of Material Science and Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 P. R. China

3. Hangzhou Yanqu Information Technology Co., Ltd. Y2 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District Hangzhou Zhejiang 310003 P. R. China

4. Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou Jiangsu 215009 P. R. China

Abstract

AbstractUltrathin carbon nitride pioneered a paradigm that facilitates effective charge separation and acceleration of rapid charge migration. Nevertheless, the dissociation process confronts a disruption owing to the proclivity of carbon nitride to reaggregate, thereby impeding the optimal utilization of active sites. In response to this exigency, the adoption of a synthesis methodology featuring alkaline potassium salt‐assisted molten salt synthesis is advocated in this work, aiming to craft a nitrogenated graphitic carbon nitride (g‐C3N5) photocatalyst characterized by thin layer and hydrophilicity, which not only amplifies the degree of crystallization of g‐C3N5 but also introduces a plethora of abundant edge active sites, engendering a quasi‐homogeneous photocatalytic system. Under visible light irradiation, the ultra‐high H2O2 production rate of this modified high‐crystalline g‐C3N5 in pure water attains 151.14 µm h−1. This groundbreaking study offers a novel perspective for the innovative design of highly efficient photocatalysts with a quasi‐homogeneous photocatalytic system.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3