P‐N Bonds‐Mediated Atomic‐Level Charge‐Transfer Channel Fabricated between Violet Phosphorus and Carbon Nitride Favors Charge Separation and Water Splitting

Author:

Wang Xin1ORCID,Wang Yan1,Ma Ming1,Zhao Xuewen2,Zhang Jinying2,Zhang Fuxiang3ORCID

Affiliation:

1. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

2. State Key Laboratory of Electrical Insulation and Power Equipment Center of Nanomaterials for Renewable Energy School of Electrical Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China

3. State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

Abstract

AbstractHeterostructures are widely employed in photocatalysis to promote charge separation and photocatalytic activity. However, their benefits are limited by the linkages and contact environment at the interface. Herein, violet phosphorus quantum dots (VPQDs) and graphitic carbon nitride (g‐C3N4) are employed as model materials to form VPQDs/g‐C3N4 heterostructures by a simple ultrasonic pulse excitation method. The heterostructure contains strong interfacial P‐N bonds that mitigate interfacial charge‐separation issues. P‐P bond breakage occurs in the distinctive cage‐like [P9] VPQD units during longitudinal disruption, thereby exposing numerous active P sites that bond with N atoms in g‐C3N4 under ultrasonic pulse excitation. The atomic‐level interfacial P–N bonds of the Z‐scheme VPQDs/g‐C3N4 heterostructure serve as photogenerated charge‐transfer channels for improved electron‐hole separation efficiency. This results in excellent photocatalytic performance with a hydrogen evolution rate of 7.70 mmol g−1 h−1 (over 9.2 and 8.5 times greater than those of pure g‐C3N4 and VPQDs, respectively) and apparent quantum yield of 11.68% at 400 nm. Using atomic‐level chemical bonds to promote interfacial charge separation in phosphorene heterostructures is a feasible and effective design strategy for photocatalytic water‐splitting materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3