Tuning Crystal Phase of Palladium–Selenium Nanowires for Enhanced Ethylene Glycol Electrocatalytic Oxidation

Author:

Wang Liping1,Yan Wei1,Yu Qingping1,Liu Liangbin2,Kao Cheng‐Wei3,Huang Yu‐Cheng3,Chan Ting‐Shan4,Hu Zhiwei5,Lin Haixin12,Shen Dazhi6,Huang Xiaoqing12,Li Yunhua1ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China

2. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen Fujian 361005 China

3. National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan

4. National Synchrotron Radiation Research Center 101 Hsin‐Ann Road Hsinchu 30076 Taiwan

5. Max Planck Institute for Chemical Physics of Solids Nothnitzer Strasse 40 01187 Dresden Germany

6. College of Chemistry and Environmental Science Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology Minnan Normal University Zhangzhou 36300 China

Abstract

AbstractAlcohol electrooxidation is pivotal for a sustainable energy economy. However, designing efficient electrocatalysts for this process is still a formidable challenge. Herein, palladium–selenium nanowires featuring distinct crystal phases: monoclinic Pd7Se2 and tetragonal Pd4.5Se for ethylene glycol electrooxidation reaction (EGOR) are synthesized. Notably, the supported monoclinic Pd7Se2 nanowires (m‐Pd7Se2 NWs/C) exhibit superior EGOR activity, achieving a mass activity (MA) and specific activity (SA) of 10.4 A mgPd−1 (18.7 mA cm−2), which are 8.0 (6.7) and 10.4 (8.2) times versus the tetragonal Pd4.5Se and commercial Pd/C and surpass those reported in the literature. Furthermore, m‐Pd7Se2 NWs/C displays robust catalytic activity for other alcohol electrooxidation. Comprehensive characterization and density functional theory (DFT) calculations reveal that the enhanced electrocatalytic performance is attributed to the increased formation of Pd0 on the high‐index facets of the m‐Pd7Se2 NWs, which lowers the energy barriers for the C─C bond dissociation in CHOHCHOH* and the CO* oxidation to CO2*. This study provides palladium‐based alloy electrocatalysts exhibiting the highest mass activity reported to date for the electrooxidation of ethylene glycol, achieved through the crystalline phase engineering strategy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3