Affiliation:
1. Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
2. Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
Abstract
AbstractElectrocatalytic oxidation of urea (UOR) is a potential energy‐saving hydrogen production technology that can replace oxygen evolution reaction (OER). Therefore, CoSeP/CoP interface catalyst is synthesized on nickel foam using hydrothermal, solvothermal, and in situ template methods. The strong interaction of tailored CoSeP/CoP interface promotes the hydrogen production performance of electrolytic urea. During the hydrogen evolution reaction (HER), the overpotential can reach 33.7 mV at 10 mA cm−2. The cell voltage can reach 1.36 V at 10 mA cm−2 in the overall urea electrolytic process. Notably, the overall urine electrolysis performance of the catalyst in the human urine medium can reach 1.40 V at 10 mA cm−2 and can exhibit durable cycle stability at 100 mA cm−2. Density functional theory (DFT) proves that the CoSeP/CoP interface catalyst can better adsorb and stabilize reaction intermediates CO* and NH* on its surface through a strong synergistic effect, thus enhancing the catalytic activity.
Funder
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献