Affiliation:
1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua Zhejiang 321004 China
2. Zhejiang Institute of Photonelectronic Zhejiang Normal University Jinhua Zhejiang 321004 China
Abstract
AbstractHalide perovskites exhibit outstanding optoelectronic properties, which make them an ideal choice for photocatalytic CO2 reduction and benzyl alcohol (BA) oxidation. Nevertheless, the simultaneous realization of the above redox coupling reactions on halide perovskites remains a great challenge, as it requires distinct catalytic sites for different target reactions. Herein, the catalytic sites of Cs2AgBiCl6 (CABC) are regulated by doping Fe for efficient coupling of photocatalytic CO2 reduction and BA oxidation. The Fe‐doped CABC (Fe: CABC) exhibits an enhanced visible‐light response and effective charge separation. Experimental results and theoretical calculations reveal a synergistic interplay between Bi and Fe sites, where the Bi and Fe sites have lower activation energies toward CO2 reduction and BA oxidation. Further investigations demonstrate that electrons and holes prefer to accumulate at the Bi site and Fe site under light irradiation, respectively, which creates favorable conditions for facilitating CO2 reduction and BA oxidation. The resultant Fe: CABC achieves a high photocatalytic performance toward CO (18.5 µmol g−1 h−1) and BD (1.1 mmol g−1 h−1) generation, which surpasses most of the state‐of‐the‐art halide photocatalysts. This work demonstrates a facile strategy for regulating the catalytic site for redox coupling reactions, which will pave a new way for designing halide perovskites for photocatalysis.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献