Covalently‐Bonded Laminar Assembly of Van der Waals Semiconductors with Polymers: Toward High‐Performance Flexible Devices

Author:

Li Ningxin1,Jabegu Tara1,He Rui2,Yun Seokjoon3,Ghosh Sujoy3,Maraba Diren1,Olunloyo Olugbenga4,Ma Hedi5,Okmi Aisha1,Xiao Kai3,Wang Gangli5,Dong Pei2,Lei Sidong1ORCID

Affiliation:

1. Department of Physics and Astronomy Georgia State University Atlanta GA 30303 USA

2. Department of Mechanical Engineering George Mason University Fairfax VA 22030 USA

3. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA

4. Department of Physics and Astronomy University of Tennessee, Knoxville Knoxville TN 37996 USA

5. Department of Chemistry Georgia State University Atlanta GA 30303 USA

Abstract

AbstractVan der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self‐passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS‐based flexible devices. Here, an effective covalent vdWS–polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2)and polydimethylsiloxane (PDMS) as a case study, gold–chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension‐induced band structure transition in MoS2. Moreover, no obvious degradation in the devices’ structural and electrical properties is identified after numerous mechanical cycle tests. This high‐quality lamination enhances the reliability of vdWS‐based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.

Funder

Georgia State University

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Vehicle Technologies Office

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3