Scalable Synthesis of Holey Deficient 2D Co/NiO Single‐Crystal Nanomeshes via Topological Transformation for Efficient Photocatalytic CO2 Reduction

Author:

Zhang Tingshi12,Zheng Yanting12,Zhao Xin12,Lin Mingxiong12,Yang Bixia12,Yan Jiawei12,Zhuang Zanyong12,Yu Yan12ORCID

Affiliation:

1. College of Materials Science and Engineering Fuzhou University New Campus Minhou Fujian 350108 China

2. Key Laboratory of Advanced Materials Technology Fuzhou University Fuzhou 350108 China

Abstract

AbstractPreparation of holey, single‐crystal, 2D nanomaterials containing in‐plane nanosized pores is very appealing for the environment and energy‐related applications. Herein, an in situ topological transformation is showcased of 2D layered double hydroxides (LDHs) allows scalable synthesis of holey, single‐crystal 2D transition metal oxides (TMOs) nanomesh of ultrathin thickness. As‐synthesized 2D Co/NiO‐2 nanomesh delivers superior photocatalytic CO2‐syngas conversion efficiency (i.e., VCO of 32460 µmol h−1 g−1 CO and of 17840 µmol h−1 g−1 H2), with VCO about 7.08 and 2.53 times that of NiO and 2D Co/NiO‐1 nanomesh containing larger pore size, respectively. As revealed in high‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM), the high performance of Co/NiO‐2 nanomesh primarily originates from the edge sites of nanopores, which carry more defect structures (e.g., atomic steps or vacancies) than basal plane for CO2 adsorption, and from its single‐crystal structure adept at charge transport. Theoretical calculation shows the topological transformation from 2D hydroxide to holey 2D oxide can be achieved, probably since the trace Co dopant induces a lattice distortion and thus a sharp decrease of the dehydration energy of hydroxide precursor. The findings can advance the design of intriguing holey 2D materials with well‐defined geometric and electronic properties.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3