Atomically Contacted Cs3Bi2Br9 QDs@UiO‐66 Composite for Photocatalytic CO2 Reduction

Author:

Fang Zhaohui1,Yue Xiaoyang1,Xiang Quanjun1ORCID

Affiliation:

1. State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 P. R. China

Abstract

AbstractMetal halide perovskite quantum dots (QDs) are widely studied in the field of photocatalytic CO2 due to their strong light absorption and long carrier migration length. However, it can not exhibit high catalytic performance because of the radiative recombination and the lack of effective catalytic sites. Metal organic frameworks (MOFs) encapsulated QDs can not only solve the aforementioned problems, but also maintain their own unique characteristics with ultra‐high specific surfaces area and abundant metal sites. In this work, lead‐free bismuth‐based halide perovskite QDs are encapsulated into Zr‐based MOF (UiO‐66), which combines the advantages with high power conversion efficiency of QDs and the high surface area and porosity of UiO‐66. In addition, benefiting from the close contact between the Cs3Bi2Br9 QDs and the UiO‐66 enables the photogenerated electrons in the QDs to be rapidly transferred to the MOF. As a result, the Cs3Bi2Br9@UiO‐66 composite exhibits a higher yield for photocatalytic CO2 reduction than that of the prepared large‐sized composite of Cs3Bi2Br9 and UiO‐66.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3