Counterintuitive Trend of Intrusion Pressure with Temperature in the Hydrophobic Cu2(tebpz) MOF

Author:

Merchiori Sebastiano1ORCID,Donne Andrea Le1ORCID,Bhatia Ribhu1ORCID,Alvelli Marta1,Yu Jiang‐Jing2,Wu Xu‐Dong2,Li Mian2,Li Dan3,Scheller Lukasz4ORCID,Lowe Alexander R.5,Geppert‐Rybczynska Monika5ORCID,Trump Benjamin A.6,Yakovenko Andrey A.7,Chorążewski Mirosław5ORCID,Zajdel Paweł4,Grosu Yaroslav58ORCID,Meloni Simone1

Affiliation:

1. Department of Chemical Pharmaceutical and Agricultural Sciences University of Ferrara Ferrara 44121 Italy

2. College of Chemistry and Chemical Engineering Chemistry and Chemical Engineering Guangdong Laboratory Shantou University Guangdong 515063 China

3. College of Chemistry and Materials Science Jinan University Guangzhou 510632 China

4. Institute of Physics University of Silesia Chorzów 41‐500 Poland

5. Institute of Chemistry University of Silesia Szkolna 9 Katowice 40‐006 Poland

6. NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899 USA

7. X‐Ray Science Division Advanced Photon Source Argonne National Laboratory Argonne IL 60439 USA

8. Centre for Cooperative Research on Alternative Energies (CIC energiGUNE) Basque Research and Technology Alliance (BRTA) Vitoria‐Gasteiz 01510 Spain

Abstract

AbstractLiquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3′,5,5′‐tetraethyl‐4,4′‐bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young–Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young–Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF’ pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.

Funder

Argonne National Laboratory

National Institute of Standards and Technology

National Natural Science Foundation of China

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Basic and Applied Basic Research Foundation of Guangdong Province

Horizon 2020

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3