Text‐to‐Microstructure Generation Using Generative Deep Learning

Author:

Zheng Xiaoyang12ORCID,Watanabe Ikumu1ORCID,Paik Jamie2ORCID,Li Jingjing3ORCID,Guo Xiaofeng4ORCID,Naito Masanobu5ORCID

Affiliation:

1. Center for Basic Research on Materials National Institute for Materials Science 1‐2‐1 Sengen Tsukuba 305‐0047 Japan

2. Reconfigurable Robotics Laboratory École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland

3. Graduate School of Comprehensive Human Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba 305‐8573 Japan

4. School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621010 China

5. Research Center for Macromolecules and Biomaterials National Institute for Materials Science 1‐2‐1 Sengen Tsukuba 305‐0047 Japan

Abstract

AbstractDesigning novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although recent advances in deep generative networks have enabled the inverse design of material microstructures, most studies involve property‐conditional generation and focus on a specific type of structure, resulting in limited generation diversity and poor human–computer interaction. In this study, a pioneering text‐to‐microstructure deep generative network (Txt2Microstruct‐Net) is proposed that enables the generation of 3D material microstructures directly from text prompts without additional optimization procedures. The Txt2Microstruct‐Net model is trained on a large microstructure‐caption paired dataset that is extensible using the algorithms provided. Moreover, the model is sufficiently flexible to generate different geometric representations, such as voxels and point clouds. The model's performance is also demonstrated in the inverse design of material microstructures and metamaterials. It has promising potential for interactive microstructure design when associated with large language models and could be a user‐friendly tool for material design and discovery.

Funder

Japan Society for the Promotion of Science

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3