Recruitment of Receptors and Ligands in a Weakly Multivalent System with Omnipresent Signatures of Superselective Binding

Author:

Lu Yao12,Allegri Giulia1,Huskens Jurriaan1ORCID

Affiliation:

1. Molecular Nanofabrication Group and Department for Molecules and Materials MESA + Institute and Faculty of Science and Technology University of Twente Enschede AE 7500 The Netherlands

2. School of Integrated Circuits and Electronics Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractRecruitment of receptors at membrane interfaces is essential in biological recognition and uptake processes. The interactions that induce recruitment are typically weak at the level of individual interaction pairs, but are strong and selective at the level of recruited ensembles. Here, a model system is demonstrated, based on the supported lipid bilayer (SLB) that mimics the recruitment process induced by weakly multivalent interactions. The weak (mm range) histidine‐nickel‐nitrilotriacetate (His2‐NiNTA) pair is employed owing to its ease of implementation in both synthetic and biological systems. The recruitment of receptors (and ligands) induced by the binding of His2‐functionalized vesicles on NiNTA‐terminated SLBs is investigated to identify the ligand densities necessary to achieve vesicle binding and receptor recruitment. Threshold values of ligand densities appear to occur in many binding characteristics: density of bound vesicles, size and receptor density of the contact area, and vesicle deformation. Such thresholds contrast the binding of strongly multivalent systems and constitute a clear signature of the superselective binding behavior predicted for weakly multivalent interactions. This model system provides quantitative insight into the binding valency and effects of competing energetic forces, such as deformation, depletion, and entropy cost of recruitment at different length scales.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3