InBi Bimetallic Sites for Efficient Electrochemical Reduction of CO2 to HCOOH

Author:

Wang Qinru1,Yang Xiaofeng1,Zang Hu1,Liu Changjiang1,Wang Jiahao1,Yu Nan1,Kuai Long2,Qin Qing1,Geng Baoyou13ORCID

Affiliation:

1. College of Chemistry and Materials Science The key Laboratory of Functional Molecular Solids Ministry of Education The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage Materials Anhui Normal University Wuhu 241002 China

2. School of Chemical and Environmental Engineering Anhui Laboratory of Clean Catalytic Engineering Anhui Polytechnic University Beijing Middle Road Wuhu 241000 China

3. Institute of Energy Hefei Comprehensive National Science Center Hefei 230031 China

Abstract

AbstractFormic acid is receiving intensive attention as being one of the most progressive chemical fuels for the electrochemical reduction of carbon dioxide. However, the majority of catalysts suffer from low current density and Faraday efficiency. To this end, an efficient catalyst of In/Bi‐750 with InOx nanodots load is prepared on a two‐dimensional nanoflake Bi2O2CO3 substrate, which increases the adsorption of *CO2 due to the synergistic interaction between the bimetals and the exposure of sufficient active sites. In the H‐type electrolytic cell, the formate Faraday efficiency (FE) reaches 97.17% at –1.0 V (vs reversible hydrogen electrode (RHE)) with no significant decay over 48 h. A formate Faraday efficiency of 90.83% is also obtained in the flow cell at a higher current density of 200 mA cm−2. Both in‐situ Fourier transform infrared spectroscopy (FT‐IR) and theoretical calculations show that the BiIn bimetallic site can deliver superior binding energy to the *OCHO intermediate, thereby fundamentally accelerating the conversion of CO2 to HCOOH. Furthermore, assembled Zn‐CO2 cell exhibits a maximum power of 6.97 mW cm−1 and a stability of 60 h.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3