Surface Stoichiometry Control of Colloidal Heterostructured Quantum Dots for High‐Performance Photoelectrochemical Hydrogen Generation

Author:

Tao Yi1,Tang Zikun1,Bao Dequan1,Zhao Haiguang2,Gao Zhenqiu1,Peng Mingfa3,Zhang Hao1,Wang Kanghong1,Sun Xuhui1ORCID

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University 199 Ren‐ai Road Suzhou Jiangsu 215123 P. R. China

2. State Key Laboratory of Bio‐Fibers and Eco‐Textiles & College of Physics University‐Industry Joint Center for Ocean Observation and Broadband Communication Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China

3. School of Electronic and Information Engineering Jiangsu Province Key Laboratory of Advanced Functional Materials Changshu Institute of Technology Changshu Jiangsu 215500 P. R. China

Abstract

AbstractManipulating the separation and transfer behaviors of charges has long been pursued for promoting the photoelectrochemical (PEC) hydrogen generation based on II–VI quantum dot (QDs), but remains challenging due to the lack of effective strategies. Herein, a facile strategy is reported to regulate the recombination and transfer of interfacial charges through tuning the surface stoichiometry of heterostructured QDs. Using this method, it is demonstrated that the PEC cells based on CdSe‐(SexS1−x)4‐(CdS)2 core/shell QDs with a proper Ssurface/Cdsurface ratio exhibits a remarkably improved photocurrent density (≈18.4 mA cm−2 under one sun illumination), superior to the PEC cells based on QDs with Cd‐rich or excessive S‐rich surface. In‐depth electrochemical and spectroscopic characterizations reveal the critical role (hole traps) of surface S atoms in suppressing the recombination of photogenerated charges, and further attribute the inferior performance of excessive S‐rich QDs to the impeded charge transfer from QDs to TiO2 and electrolyte. This work puts forward a simple surface engineering strategy for improving the performance of QDs PEC cells, providing an efficient method to guide the surface design of QDs for their applications in other optoelectronic devices.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3