De‐Pinning Fermi Level and Accelerating Surface Kinetics with an ALD Finish Boost the Fill Factor of BiVO4 Photoanodes to 44%

Author:

Lei Renbo1ORCID,Tang Yupu1,Yan Shihan1,Qiu Weitao2,Guo Zheng1,Tian Xu1,Wang Qian1,Zhang Kai2,Ju Shanshan1,Yang Shihe2,Wang Xinwei1ORCID

Affiliation:

1. School of Advanced Materials Shenzhen Graduate School Peking University Shenzhen 518055 China

2. Guangdong Provincial Key Laboratory of Nano‐Micro Materials Research School of Chemical Biology and Biotechnology Shenzhen Graduate School Peking University Shenzhen 518055 China

Abstract

AbstractWith the rapid development of performance and long‐term stability, bismuth vanadate (BiVO4) has emerged as the preferred photoanode in photoelectrochemical tandem devices. Although state‐of‐the‐art BiVO4 photoanodes realize a saturated photocurrent density approaching the theoretical maximum, the fill factor (FF) is still inferior, pulling down the half‐cell applied bias photon‐to‐current efficiency (HC‐ABPE). Among the major fundamental limitations are the Fermi level pinning and sluggish surface kinetics at the low applied potentials. This work demonstrates that the plasma‐assisted atomic layer deposition technique is capable of addressing these issues by seamlessly installing an angstrom‐scale FeNi‐layer between BiVO4 and electrolyte. Not only this ultrathin FeNi layer serves as an efficient OER cocatalyst, more importantly, it also effectively passivates the surface states of BiVO4, de‐pins the surface Fermi level, and enlarges the built‐in voltage, allowing the photoanode to make optimal use of the photogenerated holes for achieving high FF up to 44% and HC‐ABPE to 2.2%. This study offers a new approach for enhancing the FF of photoanodes and provides guidelines for designing efficient unassisted solar fuel devices.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3