The Reconstruction of Pt(001) Surface and the Shell‐Like Reconstruction of the Vicinal Pt(001) Surfaces Revealed by Neural Network Potential

Author:

Qian Cheng123ORCID,Hedman Daniel4ORCID,Li Pai5ORCID,Kim Sung Youb6ORCID,Ding Feng123ORCID

Affiliation:

1. Faculty of Materials Science and Energy Engineering Shenzhen University of Advanced Technology Shenzhen 518055 China

2. Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

3. Department of Materials Science and Engineering Ulsan National Institute of Science and Technology Ulsan 44919 Republic of Korea

4. Center for Multidimensional Carbon Materials Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea

5. State Key Laboratory of Materials for Integrated Circuits Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

6. Department of Mechanical Engineering Ulsan National Institute of Science and Technology Ulsan 44919 Republic of Korea

Abstract

AbstractIn this work, a highly accurate neural network potential (NNP) is presented, named PtNNP, and the exploration of the reconstruction of the Pt(001) surface and its vicinal surfaces with it. Contrary to the most accepted understanding of the Pt(001) surface reconstruction, the study reveals that the main driving force behind Pt(001) quasi‐hexagonal reconstruction is not the surface stress relaxation but the increased coordination number of the surface atoms resulting in stronger intralayer binding in the reconstructed surface layer. In agreement with experimental observations, the optimized supercell size of the reconstructed Pt(001) surface contains (5 × 20) unit cells. Surprisingly, the reconstruction of the vicinal Pt(001) surfaces leads to a smooth shell‐like surface layer covering the whole surface and diminishing sharp step edges.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3