Synergistic Enhancement of Photocatalytic CO2 Reduction by Built‐in Electric Field/Piezoelectric Effect and Surface Plasmon Resonance via PVDF/CdS/Ag Heterostructure

Author:

Wei Zijun1,Ji Tuo1,Zhou Xuemei1,Guo Jiawei1,Yu Xin1,Liu Hong12ORCID,Wang Jingang1

Affiliation:

1. Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China

2. State Key Laboratory of Crystal Materials Shandong University 27 Shandanan Road Jinan Shandong 250100 P. R. China

Abstract

AbstractPhotocatalytic reduction of CO2 using solar energy is an effective means to achieve carbon neutrality. However, the photocatalytic efficiency still requires improvements. In this study, polyvinylidene fluoride (PVDF) ferroelectric/piezoelectric nanofiber membranes are prepared by electrospinning. Cadmium sulfide (CdS) nanosheets are assembled in situ on the surface of PVDF based on coordination between F and Cd2+, and then Ag nanoparticles are deposited on CdS. Because of the synergistic effect between localized surface plasmon resonance of Ag nanoparticles and the built‐in electric field of PVDF, the CO2 photocatalytic reduction efficiency using PVDF/CdS/Ag under visible light irradiation is significantly higher than that of any combination of CdS, CdS/Ag, or PVDF/CdS. Under micro‐vibration to simulate air flow, the CO2 reduction efficiency of PVDF/CdS/Ag is three times higher than that under static conditions, reaching 240.4 µmol g−1 h−1. The piezoelectric effect caused by micro‐vibrations helps prevent the built‐in electric field from becoming saturated with carriers and provides a continuous driving force for carrier separation.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3