Phase‐Dependent Phonon Heat Transport in Nanoscale Gallium Oxide Thin Films

Author:

Xiao Xinglin1,Mao Yali1,Meng Biwei1,Ma Guoliang1,Hušeková Kristína2,Egyenes Fridrich2,Rosová Alica2,Dobročka Edmund2,Eliáš Peter2,Ťapajna Milan2,Gucmann Filip2,Yuan Chao1ORCID

Affiliation:

1. The Institute of Technological Sciences of Wuhan University Wuhan University Wuhan 430072 P. R. China

2. Institute of Electrical Engineering Slovak Academy of Sciences Dúbravská cesta 9 Bratislava 841 04 Slovakia

Abstract

AbstractDifferent phases of Ga2O3 have been regarded as superior platforms for making new‐generation high‐performance electronic devices. However, understanding of thermal transport in different phases of nanoscale Ga2O3 thin‐films remains challenging, owing to the lack of phonon transport models and systematic experimental investigations. Here, thermal conductivity (TC) and thermal boundary conductance (TBC) of the α‐, β‐, and (001) κ‐Ga2O3 thin films on sapphire are investigated. At ≈80 nm, the measured TC of α (8.8 W m−1 K−1) is ≈1.8 times and ≈3.0 times larger than that of β and κ, respectively, consistent with model based on density functional theory (DFT), whereas the model reveals a similar TC for the bulk α‐ and β‐Ga2O3. The observed phase‐ and size‐dependence of TC is discussed thoroughly with phonon transport properties such as phonon mean free path and group velocity. The measured TBC at Ga2O3/sapphire interface is analyzed with diffuse mismatch model using DFT‐derived full phonon dispersion relation. Phonon spectral distribution of density of states, transmission coefficients, and group velocity are studied to understand the phase‐dependence of TBC. This study provides insight into the fundamental phonon transport mechanism in Ga2O3 thin films and paves the way for improved thermal management of high‐power Ga2O3‐based devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Agentúra na Podporu Výskumu a Vývoja

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3