Oligomeric Zinc Thiolates Tethering Multidentate Carboxylates for Nondestructive Aqueous Phase Transfer of Quantum Dots

Author:

Han Jisu1,Choi Yeongho1,Lee Hyeonjun2,Lee Doh C.2,Lim Jaehoon134ORCID

Affiliation:

1. Department of Energy Science Center for Artificial Atoms Sungkyunkwan University (SKKU) Suwon Gyeonggi‐do 16419 Republic of Korea

2. Department of Chemical and Biomolecular Engineering KAIST Institute for the Nanocentury (KINC) Energy and Environmental Research Center (EERC) Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

3. SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea

4. Department of Future Energy Engineering (DFEE) Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea

Abstract

AbstractFunctionalization of quantum dots (QDs) via ligand exchange is prone to debase their photoluminescence quantum yield (PL QY) owing to the unavoidable surface damage by excess reactants, and even worse in aqueous medium. Herein, the oligomeric zinc thiolate as the multidentate hydrophilic ligand featuring facile synthetic protocol is proposed. A simple reaction between ZnCl2 and 3‐mercaptopropionic acid produces oligomeric ligands containing 3–6 zinc thiolate units, where the terminal moieties provide multidentate anchoring to the surface as well as hydrophilicity. 2D proton nuclear Overhauser effect spectroscopy (2D 1H NOESY) and X‐ray photoelectron spectroscopy (XPS) reveal that the oligomeric zinc thiolate ligands adsorb on the surface via multidentate metal carboxylate bindings without destruction of molecular structure, regardless of partial dissociation of thiolate branches in aqueous phase. Enhanced binding affinity granted by the multidentate nature allows for the effective exchange of original surface ligands without considerable surface deterioration. The zinc thiolate‐capped Cd‐free aqueous QDs exhibit a high photoluminescence quantum yield of ≈90% and extended stability against long‐term storage and photochemical stress.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3