D–A Conjugated Polymer/CdS S‐Scheme Heterojunction with Enhanced Interfacial Charge Transfer for Efficient Photocatalytic Hydrogen Generation

Author:

Li Yaqi12,Wan Sijie12,Liang Weichen12,Cheng Bei12,Wang Wang12,Xiang Yao3,Yu Jiaguo4,Cao Shaowen12ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

2. Hubei Technology Innovation Center for Advanced Composites Wuhan University of Technology Wuhan 430070 P. R. China

3. Hospital of Wuhan University of Technology Wuhan University of Technology Wuhan 430070 P. R. China

4. Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China

Abstract

AbstractOwing to the improved charge separation and maximized redox capability of the system, Step‐scheme (S‐scheme) heterojunctions have garnered significant research attention for efficient photocatalysis of H2 evolution. In this work, an innovative linear donor–acceptor (D–A) conjugated polymer fluorene‐alt‐(benzo‐thiophene‐dione) (PFBTD) is coupled with the CdS nanosheets, forming the organic–inorganic S‐scheme heterojunction. The CdS/PFBTD (CP) composite exhibits an impressed hydrogen production rate of 7.62 mmol g−1 h−1 without any co‐catalysts, which is ≈14 times higher than pristine CdS. It is revealed that the outstanding photocatalytic performance is attributed to the formation of rapid electron transfer channels through the interfacial Cd─O bonding as evidenced by the density functional theory (DFT) calculations and in situ X‐ray photoelectron spectroscopy (XPS) analysis. The charge transfer mechanism involved in S‐scheme heterojunctions is further investigated through the photo‐irradiated Kelvin probe force microscopy (KPFM) analysis. This work provides a new point of view on the mechanism of interfacial charge transfer and points out the direction of designing superior organic–inorganic S‐scheme heterojunction photocatalysts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3