Low levels of Cd2+ combined with procymidone may cause ovarian damage in mice via unfolded protein response

Author:

Li Fan1,Wang Xuning1,Zhang Jiaxin2,Nie Hui2,He Shiyun2,Li Yushan2,Xia Ruowen2,Zhu Yongfei1ORCID

Affiliation:

1. Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School Hunan Normal University Changsha China

2. Department of Clinical Medicine, Medical School Hunan Normal University Changsha China

Abstract

AbstractAs no study about the combined effect of low levels of Cd2+ with procymidone (PCM) on organs and organisms, we investigated their actions on mouse‐ovary in vivo and in vitro. Four‐week mice were treated with corn oil for the control group, corn oil + 0.0045 mg/L Cd2+ (CdCl2 was dissolved in ultrapure water and freely consumed by mice) for Cd2+ group, 50 mg/kg/d PCM (suspended in corn oil and administered orally to mice) for PCM group, and 50 mg/kg/d PCM + 0.0015 (0.0045 and 0.0135) mg/L Cd2+ for L+ (M+ and H+) PCM group for 21 days. For in vitro experiment, the cultured ovaries were treated with acetone for the control group, 0.1% acetone + 8.4 μg/L Cd2+ for the Cd2+ group, 0.63 mg/L PCM (dissolved in acetone) for the PCM‐group, and 0.63 mg/L PCM + 2.8 (8.4 and 25.2) μg/L Cd2+ for L+ (M+ and H+) PCM group for 7 days. Mouse body weight in each treatment group, the weight and volume of ovaries in all PCM groups were lower than the control. Both in vivo and in vitro, all‐stage follicle numbers were lower in M+PCM and H+PCM groups, whereas the atretic follicles and CASPASE3/8 were higher; meanwhile, lower estradiol and progesterone and higher unfolded protein response (UPR) members in all PCM groups. L+, M+, and H+PCM groups had further ovarian damage and stronger UPR than PCM groups, as did M+PCM groups over Cd2+ groups. It is hypothesized low‐level PCM and Cd2+ may mutually promote each other's triggered UPR and exacerbate ovarian damage.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3