Applications of time‐resolved step‐scan Fourier‐transform infrared spectroscopy in revealing the light‐initiated reactions in condensed phases

Author:

Chu Li‐Kang1ORCID

Affiliation:

1. Department of Chemistry National Tsing Hua University Hsinchu Taiwan

Abstract

AbstractStep‐scan Fourier‐transform infrared spectroscopy (ssFTIR) simultaneously provides the spectroscopic and kinetic information of a given reaction. ssFTIR has been extensively employed to acquire the transient absorption and emission spectra in gas phase for identifying unstable species, for example, various Criegee intermediates, and elucidating the dynamics and kinetics of the reaction, such as the molecular elimination dynamics of haloalkenes and the bimolecular reactions involving chlorine atoms and singlet oxygen atoms. In addition to gaseous studies, ssFTIR has been also utilized to record the time‐resolved difference spectra of the photochemical reactions in condensed phases, such as the photolysis of metal–ligand complexes, photocycles of the retinal proteins, coordination capability of solvents to unstable transient species, chemical reactions of atmosphere‐related molecules in aqua, and the exciplex dynamics of organic light emitting materials. Moreover, my group has pioneered the recording of the transient thermal infrared emission of gold nanostructures upon photoexcitation. The experimental setups and the working principles for probing the time‐resolved infrared absorption and emission in condensed phases will be revealed and a number of studies on chemical, biological, and materials systems will be described. These reported results demonstrate that ssFTIR is a versatile tool for exploring the properties of novel materials and photoreactions in condensed phases.

Funder

National Science and Technology Council

Publisher

Wiley

Subject

General Chemistry

Reference135 articles.

1. XXVIII. Visibility of interference-fringes in the focus of a telescope

2. https://www.bruker.com/en/products‐and‐solutions/infrared‐and‐raman/ft‐ir‐research‐spectrometers/vertex‐research‐ft‐ir‐spectrometer/step‐scan‐‐‐rapid‐scan‐interleaved‐trs.html(accessed: May 14 2023).

3. Time‐resolved Fourier transform spectroscopy with 0.25 cm−1spectral and <10−7s time resolution in the visible region

4. Time-Resolved FT-IR Absorption Spectroscopy Using a Step-Scan Interferometer

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3