An algorithm to analyse long‐term tendencies of pressure systems over Europe

Author:

Varga‐Balogh Adrienn1ORCID,Leelőssy Ádám1ORCID,Varga László2,Mészáros Róbert1ORCID

Affiliation:

1. Department of Meteorology, Institute of Geography and Earth Sciences Eötvös Loránd University Budapest Hungary

2. Graphisoft SE Budapest Hungary

Abstract

AbstractClimate change is associated with the modification of the polar jet stream, cyclone tracks and corresponding circulation patterns over midlatitudes. To apply these synoptic changes on regional climate, the changing sensitivity of a specific location to different pressure centre regions must be studied. An automated, objective circulation pattern detection method was developed to investigate the evolution of cyclonic and anticyclonic influence at any specific point within the European domain. The algorithm was used to assign each location to influencing low‐ or high‐pressure centres within the domain. Pressure centre displacements and the frequency redistribution among different centres were studied for each location. The 180‐year (January 1836–December 2015) mean sea level pressure dataset on the European domain with a 0.703° × 0.702° spatial and daily temporal resolution was obtained from NOAA 20th Century Reanalysis project. The presented method can apply the continental‐scale changes to specific locations. A significant increase of anticyclonic influence was found in southern and central Europe, in line with the northward displacement of Atlantic cyclones. Hundred and eighty year (180‐year) change of the number of days with anticyclonic versus cyclonic influence was found to be between +10% and 15% in the Mediterranean and +2% and 10% in most of Europe. The increasing anticyclonic influence in central Europe was strongest in the spring and the winter and was most attributable to the eastern European anticyclone. Results highlight the importance of research on the dynamical climate response of anticyclonic pressure systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3