Surface exposed and charged residues drive thermostability in fungi

Author:

Senthilkumar Shricharan1ORCID,Mahesh Sankar2,Jaisankar Subachandran1,Yennamalli Ragothaman M.1

Affiliation:

1. Department of Bioinformatics, School of Chemical and Biotechnology SASTRA Deemed to be University Thanjavur India

2. Department of Biotechnology, School of Chemical and Biotechnology SASTRA Deemed to be University Thanjavur India

Abstract

AbstractFungi, though mesophilic, include thermophilic and thermostable species, as well. The thermostability of proteins observed in these fungi is most likely to be attributed to several molecular factors, such as the presence of salt bridges and hydrogen bond interactions between side chains. These factors cannot be generalized for all fungi. Factors impacting thermostability can guide how fungal thermophilic proteins gain thermostability. We curated a dataset of proteins for 14 thermophilic fungi and their evolutionarily closer mesophiles. Additionally, the proteome of Chaetomium thermophilum and its evolutionarily related mesophile Chaetomium globosum was analyzed. Using eggNOG, we categorized the proteomes into clusters of orthologous groups (COGs). While the individual count of proteins is over‐represented in mesophiles (for COGs S, G, L, and Q), there are certain features that are significantly enriched in thermophiles (such as charged residues, exposed residues, polar residues, etc.). Since fungi are known to be cellulolytic and chitinolytic by nature, we selected 37 existing carbohydrate‐active enzymes (CAZyme) families in Eurotiales, Mucorales, and Sordariales. We looked at closely similar sequences and their modeled structures for further comparison. Comparing solvent accessibilities of thermophilic and mesophilic proteins, exposed and intermediate residues are observed higher in thermophiles whereas buried residues are observed higher in mesophiles. For specific five CAZYme families (GH7, GH11, GH18, GH45, and CBM1) we looked at position‐specific substitutions between thermophiles and mesophiles. We also found that there are relatively more intramolecular interactions in thermophiles compared to mesophiles. Thus, we found factors such as surface exposed residues and charged residues that are highly likely to impart thermostability in fungi, and this study sets the stage for further studies in the area of fungal thermostability.

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3