An initial investigation for employing ACH depth function in degradation model selection: A case study with real data

Author:

Asadi Arefe1,Fouladirad Mitra2,Tomassi Diego1

Affiliation:

1. LIST3N Université de Technologie de Troyes Troyes France

2. Aix Marseille Université, M2P2 UMR CNRS 7340, Centrale Med Marseille France

Abstract

AbstractIn degradation modeling, stochastic processes often do not meet the classical properties necessary for traditional goodness‐of‐fit tests. This paper presents an initial investigation into employing the ACH depth function and its potential in degradation model selection. We commence by presenting various stochastic processes as degradation models and their selection criteria. Subsequently, we delve into the ACH depth function, highlighting its potential in this context. Through simulated data, we assess the application of this functional depth measure for model selection. The methodology's validity is further reinforced by its application to real‐world data, underscoring its effectiveness.

Funder

Conseil régional du Grand Est

Publisher

Wiley

Reference32 articles.

1. Degradation modeling applied to residual lifetime prediction using functional data analysis;Zhou RR;Ann Appl Stat,2011

2. Degradation Processes in Reliability

3. An empirical likelihood goodness-of-fit test for time series

4. Remarks on a Multivariate Transformation

5. Mathematics and the picturing of data;Tukey JW;Proc Int Congr Math Vancouver,1975

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface to the special issue on degradation and maintenance, modelling and analysis;Applied Stochastic Models in Business and Industry;2024-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3