Robust and Flexible Sliding Tactile Sensor for Surface Pattern Perception and Recognition

Author:

Zhu Zhihao1,Xu Yingtian2,Lin Waner3,Hu Zhixian2,Lin Zhuofan1,Sun Zhenglong2,Peng Zhengchun1,Wang Ziya1ORCID

Affiliation:

1. Center for Stretchable Electronics and Nano Sensors State Key Laboratory of Radio Frequency Heterogeneous Integration School of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

2. School of Science and Engineering The Chinese University of Hong Kong Shenzhen 518172 China

3. Department of Micro-Nano Electronics School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China

Abstract

Perceiving surface characteristics through tactile interaction typically requires high‐resolution devices or precise spatial scanning to record and analyze a significant amount of information. However, most available tactile sensors require complicated technological processes, redundant layouts, and data acquisition circuits, which limits their ability to provide a real‐time static perception and feedback for potential applications such as robotic manipulation. Drawing inspiration from the sliding tactile (ST) perception mode of the human fingertip, a robust and flexible ST sensor with a low array density of 2.7 cells cm−2 is reported. This innovative sensor has a soft and cambered configuration that allows it to rapidly and accurately recognize the 3D surface features of objects, including grooves as small as 500 μm. Benefiting from the strong correlation between collected electronic responding and local deformation of sensing cell, the ST sensor can adaptively reconstruct surface patterns with the assistance of deep learning, even on unstructured objects. The pattern recognition system based on the robot is demonstrated by accurately classifying a set of mahjong tiles with nearly 100% accuracy, surpassing human tactile perception capabilities in the same task.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3