A Fast Geometric Regularizer to Mitigate Event Collapse in the Contrast Maximization Framework

Author:

Shiba Shintaro12ORCID,Aoki Yoshimitsu1,Gallego Guillermo23ORCID

Affiliation:

1. Department of Electronics and Electrical Engineering Faculty of Science and Technology Keio University Kanagawa 223‐8522 Japan

2. Department of Electrical Engineering and Computer Science Technische Universität Berlin 10587 Berlin Germany

3. Einstein Center Digital Future and Science of Intelligence Excellence Cluster 10117 Berlin Germany

Abstract

Event cameras are emerging vision sensors and their advantages are suitable for various applications such as autonomous robots. Contrast maximization (CMax), which provides state‐of‐the‐art accuracy on motion estimation using events, may suffer from an overfitting problem called event collapse. Prior works are computationally expensive or cannot alleviate the overfitting, which undermines the benefits of the CMax framework. A novel, computationally efficient regularizer based on geometric principles to mitigate event collapse is proposed. The experiments show that the proposed regularizer achieves state‐of‐the‐art accuracy results, while its reduced computational complexity makes it two to four times faster than previous approaches. To the best of our knowledge, this regularizer is the only effective solution for event collapse without trading off the runtime. It is hoped that this work opens the door for future applications that unlocks the advantages of event cameras. Project page: https://github.com/tub‐rip/event_collapse

Funder

Deutscher Akademischer Austauschdienst

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Medicine

Reference52 articles.

1. A 128$\times$128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor

2. T.Finateu A.Niwa D.Matolin K.Tsuchimoto A.Mascheroni E.Reynaud P.Mostafalu F.Brady L.Chotard F.LeGoff H.Takahashi H.Wakabayashi Y.Oike C.Posch inIEEE Intl. Solid-State Circuits Conf. (ISSCC) IEEE Piscataway NJ2020 pp.112–114.

3. Event-Based Neuromorphic Vision for Autonomous Driving: A Paradigm Shift for Bio-Inspired Visual Sensing and Perception

4. Intelligent In‐Vehicle Interaction Technologies

5. Neuromorphic Motion Detection and Orientation Selectivity by Volatile Resistive Switching Memories

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CMax-SLAM: Event-Based Rotational-Motion Bundle Adjustment and SLAM System Using Contrast Maximization;IEEE Transactions on Robotics;2024

2. Time-to-Contact Map by Joint Estimation of Up-to-Scale Inverse Depth and Global Motion using a Single Event Camera;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

3. Taming Contrast Maximization for Learning Sequential, Low-latency, Event-based Optical Flow;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

4. Density Invariant Contrast Maximization for Neuromorphic Earth Observations;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

5. Event-based Background-Oriented Schlieren;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3