Physics‐Informed Neural Networks to Model and Control Robots: A Theoretical and Experimental Investigation

Author:

Liu Jingyue1ORCID,Borja Pablo2ORCID,Della Santina Cosimo13ORCID

Affiliation:

1. Department of Cognitive Robotics Delft University of Technology 2628 CD Delft The Netherlands

2. School of Engineering, Computing and Mathematics University of Plymouth PL4 8AA Plymouth UK

3. Institute of Robotics and Mechatronics German Aerospace Center (DLR) 82234 Oberpfaffenhofen Germany

Abstract

This work concerns the application of physics‐informed neural networks to the modeling and control of complex robotic systems. Achieving this goal requires extending physics‐informed neural networks to handle nonconservative effects. These learned models are proposed to combine with model‐based controllers originally developed with first‐principle models in mind. By combining standard and new techniques, precise control performance can be achieved while proving theoretical stability bounds. These validations include real‐world experiments of motion prediction with a soft robot and trajectory tracking with a Franka Emika Panda manipulator.

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extrapolation of Physics-Inspired Deep Networks in Learning Robot Inverse Dynamics;Mathematics;2024-08-15

2. Interfacial conditioning in physics informed neural networks;Physics of Fluids;2024-07-01

3. An Empirical Investigation on Variational Autoencoder-Based Dynamic Modeling of Deformable Objects from RGB Data;2024 32nd Mediterranean Conference on Control and Automation (MED);2024-06-11

4. Physics-Informed Neural Networks for Continuum Robots: Towards Fast Approximation of Static Cosserat Rod Theory;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Dynamics Modeling of Soft Robots Based on Attention-enhanced Lagrangian Deep Neural Networks;2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3