Quantifying the impact of habitat modifications on species behavior and mortality: A case study of tropical tuna

Author:

Dupaix Amaël1ORCID,Dagorn Laurent1,Deneubourg Jean‐Louis2,Capello Manuela1

Affiliation:

1. MARBEC, Univ. Montpellier, CNRS, Ifremer, INRAE, IRD Sète France

2. CENOLI, Université Libre de Bruxelles Bruxelles Belgium

Abstract

AbstractEcosystems and biodiversity across the world are being altered by human activities. Habitat modification and degradation are among the most important drivers of biodiversity loss. These modifications can have an impact on species behavior, which can, in turn, impact their mortality. While several studies have investigated the impacts of habitat degradation and fragmentation on terrestrial species, the extent to which habitat modifications affect the behavior and fitness of marine species is still largely unknown, particularly for pelagic species. Since the early 1990s, industrial purse seine vessels targeting tuna have started deploying artificial floating objects—Drifting Fish Aggregating Devices (DFADs)—in all oceans to increase tuna catchability. Since then, the massive deployment of DFADs has modified tuna surface habitat, by increasing the density of floating objects, with potential impacts on tuna associative behavior and mortality. In this study, we investigate these impacts for yellowfin tuna in the Indian Ocean. Using an individual‐based model based on a correlated random walk and newly available data on DFAD densities, we quantify for the first time how the increase in floating object density, due to DFAD use, affects the percentage of time that yellowfin tuna spend associated, which, in turn, directly impacts their availability to fishers and fishing mortality. This modification of tuna associative behavior could also have indirect impacts on their fitness, by retaining tuna in areas detrimental to them or disrupting schooling behavior. Hence, there is an urgent need to further investigate DFAD impacts on tuna behavior, in particular, taking social behavior into account, and to continue regulation efforts on DFAD use and monitoring.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3