Deep learning‐based channel estimation for OFDM‐IM systems over Rayleigh fading channels

Author:

Adiguzel Omer1ORCID,Develi Ibrahim2

Affiliation:

1. Department of Electrical and Electronics Engineering Tarsus University Mersin Turkey

2. Department of Electrical and Electronics Engineering Erciyes University Kayseri Turkey

Abstract

SummaryDeep learning (DL)‐based channel estimation for orthogonal frequency division multiplexing with index modulation (OFDM‐IM) under Rayleigh fading channel conditions is presented in this paper. A deep neural network (DNN) is utilized to estimate the channel response in simulations. The proposed DNN is trained using the channel coefficient derived through the least squares (LS) method. Then channel estimation is conducted using the trained DNN. Within the DNN, the long short‐term memory (LSTM) layer is included as the hidden layer. Different scenarios are handled in simulations and the proposed DNN is compared with traditional channel estimation methods. The simulations demonstrate that the DL‐based channel estimation significantly surpasses the LS and minimum mean‐square error (MMSE) techniques.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3