G‐MATT: Single‐step retrosynthesis prediction using molecular grammar tree transformer

Author:

Zhang Kevin1,Mann Vipul2ORCID,Venkatasubramanian Venkat2ORCID

Affiliation:

1. Department of Computer Science Columbia University New York City New York USA

2. Department of Chemical Engineering Columbia University New York City New York USA

Abstract

AbstractVarious template‐based and template‐free approaches have been proposed for single‐step retrosynthesis prediction in recent years. While these approaches demonstrate strong performance from a data‐driven metrics standpoint, many model architectures do not incorporate underlying chemistry principles. Here, we propose a novel chemistry‐aware retrosynthesis prediction framework that combines powerful data‐driven models with prior domain knowledge. We present a tree‐to‐sequence transformer architecture that utilizes hierarchical SMILES grammar‐based trees, incorporating crucial chemistry information that is often overlooked by SMILES text‐based representations, such as local structures and functional groups. The proposed framework, grammar‐based molecular attention tree transformer (G‐MATT), achieves significant performance improvements compared to baseline retrosynthesis models. G‐MATT achieves a promising top‐1 accuracy of 51% (top‐10 accuracy of 79.1%), an invalid rate of 1.5%, and a bioactive similarity rate of 74.8% on the USPTO‐50K dataset. Additional analyses of G‐MATT attention maps demonstrate the ability to retain chemistry knowledge without relying on excessively complex model architectures.

Funder

Division of Emerging Frontiers and Multidisciplinary Activities

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3