Adding insult to injury: Light competition and allelochemical weapons interact to facilitate grass invasion

Author:

Morrison Colin R.12ORCID,Rhodes Aaron C.12,Bowman Elizabeth A.12,Plowes Robert M.12,Sedio Brian E.13ORCID,Gilbert Lawrence E.12

Affiliation:

1. Department of Integrative Biology The University of Texas at Austin Austin Texas USA

2. Brackenridge Field Laboratory The University of Texas at Austin Austin Texas USA

3. Smithsonian Tropical Research Institute Panama Republic of Panama

Abstract

AbstractBiological invasions are a leading ecological issue of the 21st century because of their worldwide contributions to biodiversity loss and degradation of ecosystem services. Answering general questions about the mechanisms facilitating the spread of successful invasives is key to understanding how to manage them moving forward. The success of introduced primary producers has often been attributed to superior competitive ability or to their release from natural enemies that constrained them in their native range. In contrast, nonnative primary producers can successfully invade and establish in new areas by releasing allelochemical compounds into the environment that are toxic to the native flora. The interactive effects of allelopathy and competition remain underexplored. Here, we evaluated the mechanism of invasion by Guinea grass, a globally distributed tallgrass from tropical and subtropical Africa with known allelopathic effects associated with 2‐hydroxyphenylacetic acid (2HPAA). We asked if allelopathy and light availability interact to give Guinea grass a competitive advantage during seedling establishment in its introduced range. We used a fully factorial greenhouse experiment in which allelochemical concentrations and light availability treatments were based on empirical measurements of these variables at an invaded site in South Texas. Seedling recruitment and growth were assessed for three native species and for Guinea grass itself. We also described the metabolome (the complete set of small molecules) of an invasive grass for the first time to facilitate a comparison of the effect of the known allelochemical 2HPAA with that of the whole‐plant chemical extract. Shading and allelochemistry each reduced recruitment and growth by themselves, and a significant interaction of these stressors exacerbated the negative effects in the shade, resulting in short plants, low biomass, and ultimately decreased seedling recruitment. The whole‐plant metabolomic extract had significantly stronger effects than pure 2HPAA, and these negative effects were intensified in the shade. Moreover, the mechanism showcased here demonstrated that resource competition and biochemical interference are not mutually exclusive mechanisms that facilitate the spread of a globally distributed invasive species.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3